
Searching for Patterns with Regular
Expressions

Michael Wayne Goodman goodmami@uw.edu
Nanyang Technological University, Singapore
2019-10-18

mailto:goodmami@uw.edu

Presentation agenda

Introduction

Crafting Regular Expressions

Basic Patterns

Flexible Patterns

Matching with Groups

Substitution

Tools

1

Introduction

For a class I teach, I asked students to provide interesting
examples of netspeak, such as b4 meaning before. Many of
them offered laughter sounds in many languages:

Thai 55
Spanish jeje
Japanese ww;笑笑
Chinese 哈哈;呵呵
Korean keke; kk

Q: If I want to parse webcrawl data for laughter, how can I
match all of these? Searching for each individually takes too
long.

2

Introduction

First I’ll define a grammar:
Sta r t : = ” 5 ” Tha

| ”ha ” Eng
| ” j e ” Spa
| ”w” Jp1
| ”笑 ” Jp2
| ”哈 ” Ch1
| ”呵 ” Ch2
| ” ke ” Ko1
| ” k ” Ko2

Tha : = ” 5 ” Tha | ” 5 ”
Eng : = ”ha ” Eng | ”ha ”
Spa : = ” j e ” Spa | ” je ”
Jp1 : = ”w” Jp1 | ”w”
Jp2 : = ”笑 ” Jp2 | ”笑 ”
Ch1 : = ”哈 ” Ch1 | ”哈 ”
Ch2 : = ”呵 ” Ch2 | ”呵 ”
Ko1 : = ” ke ” Ko1 | ” ke ”
Ko2 : = ” k ” Ko2 | ” k ”

I could parse it using Python:
def match_laughter (s) :

i = 0
i f s . s t a r t sw i th (’ 55 ’) :

i = match_thai (s , 2)
e l i f s . s t a r t sw i th (’ haha ’) :

i = match_english (s , 4)
e l i f . . .
etc . . .
i f i > 0 :

return s [: i]
else :

return None

def match_thai (s , i) :
i f s [i] == ’ 5 ’ :

i = match_thai (s , i + 1)
return i

etc . . .

3

Introduction

Or I could write my grammar as a regular expression:� �
55+|ha(ha)+|je(je)+|ww+|笑笑+|哈哈+|呵呵+|ke(ke)+|kk+� �

4

Regex to the Rescue

https://xkcd.com/208/ 5

https://xkcd.com/208/

Problems

But regular expressions are a skill to learn and take time to
master, leading to (slightly demotivating) quotes like the
following:

On 12 August, 1997, Jamie Zawinski said:1

Some people, when confronted with a problem, think
“I know, I’ll use regular expressions.”
Now they have two problems.

1Paraphrasing D. Tilbrook; Source:
http://regex.info/blog/2006-09-15/247

6

http://regex.info/blog/2006-09-15/247

99 Problems

... which is often referenced, repeated, and recycled.

For example:

https://xkcd.com/1171/

7

https://xkcd.com/1171/

Regular Expressions: What are they?

Regular expressions are a mini-language that compactly
encode grammars for matching strings. They came out of the
theoretical idea of regular grammars, which are the simplest
kind of grammar in the Chomsky Hierarchy.

Modern regular expression engines, however, allow for
non-regular features as well, such as lookahead and
back-references.

8

https://en.wikipedia.org/wiki/Chomsky_hierarchy

Regular Expressions: What are they good for?

Regular expressions are great at finding matches that go
beyond literal matches. For example, finding something that
repeats, spelling alternations, flexible word collocations,
optional matches, etc.

9

Regular Expressions: What are they not good for?

But regular expressions still have their limits. They are still
mostly unable to do context-sensitive matching. For instance,
you cannot use them to parse HTML data.

(For a humorous explanation, see one of the most famous
StackOverflow answers)

10

https://stackoverflow.com/a/1732454/1441112
https://stackoverflow.com/a/1732454/1441112

It’s all fun and games...

Solving a regular expression can be like solving a puzzle. It’s
fun! Some go as far as making it a game:

• https://regexcrossword.com/
• https://alf.nu/RegexGolf

https://xkcd.com/1313/
11

https://regexcrossword.com/
https://alf.nu/RegexGolf
https://xkcd.com/1313/

Presentation agenda

Introduction

Crafting Regular Expressions

Basic Patterns

Flexible Patterns

Matching with Groups

Substitution

Tools

12

Crafting Regular Expressions

Now we will cover a number of regular expression features.

For this part, I recommend having a regular expression tool
open, such as:

https://regex101.com/

13

https://regex101.com/

Basic Patterns

14

Sequences, Choices, and Greedy Matching

• Sequential sub-patterns match sequentially
• Choices, or alternations, delimited with |
• Matches are greedy: they consume as much as possible

Pattern : abc | cba

Input : abcba
Match : abc
Remainder : ba <−− does not match cba

Input : cbabc
Match : cba
Remainder : bc <−− does not match abc

15

Repetition

Characters and subpatterns can be repeated via several
mechanisms. The most basic are * and + (Kleene star/plus2)
and ?, but finer control is possible:

• a* : match ”a” zero or more times
• a+ : match ”a” one or more times
• a? : match ”a” zero or one time (optionality)
• a{3} : match ”a” 3 times exactly
• a{3,5} : match ”a” between 3 and 5 times
• a{3,}‘ : match ”a” 3 or more times
• a{,5} : match ”a” 5 or fewer times

2https://en.wikipedia.org/wiki/Kleene_star

16

https://en.wikipedia.org/wiki/Kleene_star

Anchors

Anchors are used to match only in certain contexts:

• ^ : match from the beginning of the string
• $: match to the end of the string
• \b : match word boundaries

17

Dot

The dot character (.) is a special character that matches any
single character in the input. This is often useful for getting
context. For example, the following matches up to 20
characters before and after the word China:� �
.{,20} China .{,20}� �

18

Flexible Patterns

19

Character Classes

Character classes, or character sets, match one of a set of
characters. They are specified in brackets [], hyphens (-)
denote a range, and a caret (^) at the beginning inverts the set.

• [abc] : match a, b, or c
• [a-z] : match a, b, ..., or z
• [^abc] : match anything that is not a, b, or c

20

Escapes

Now we’ve seen some characters that regex treats specially
(we’ll get to the last two in a minute):� �
| * + { } [] ^ \$ \ . ()� �
But if you want to match these literal characters, you must
escape them with \.� �
\| * \+ \{ \} \[\] \^ \$ \\ \. \(\)� �

21

Special Escapes

Escapes are not only used to match special characters literally,
but also to match literal characters specially. We’ve already
seen one, \b for matching word boundaries. Some others are:

• \w : match a word character
• \d : match a digit character
• \s : match a whitespace character

These have negated forms, as well:

• \W : match a non-word character
• \D : match a non-digit character
• \S : match a non-whitespace character

22

Matching with Groups

23

Groups

Parentheses (()) are used for groups, which have several uses:

• they let you create alternations in a local context
• they let you specify repetitions of subpatterns
• they can be used for back references (backslash number,
like \1 for the first group, etc.)

Example:� �
(they|he|she) did(n't| not)� �
Matches they didn’t, he did not, etc.

24

Groups

More examples:� �
\w+(, \w+)*,? and \w+� �
Matches apples and bananas; Singapore, Malaysia, Brunei, and
Indonesia; etc.� �
(\w)\1� �
Matches single-character repetition, as in the o of foot, or人人,
謝謝, etc.

25

Repeated Groups

The groups we’ve seen are called capturing groups because
the matched text is captured for use in back-references, etc.

When a group is repeated, only the last match is captured.
Consider if you want to match English reduplication as in I live
in a house house, not a flat.� �
a (\w)+ \1� �
This would match ‘a house e’ (because only the e of house is
referenced).

Instead put the repetition inside the group:� �
a (\w+) \1� �

26

Advanced Groups 2

Nested groups are possible, but note that the matched
contents will overlap:� �
Pattern: (Hi, (\w+))!
Input : Hi, Kim!
\1 : Hi, Kim
\2 : Kim� �

27

Advanced Groups 3

There are also non-capturing groups which have the benefits
of groups but do not capture the text and are not assigned
back-reference numbers. They are declared with ?: at the
beginning of the group.� �
(\w+(?:, \w+)*,? and \w+)� �
Here, the inner group is non-capturing and repeated, so the
outer group captures the entire conjunctive phrase.

28

Presentation agenda

Introduction

Crafting Regular Expressions

Basic Patterns

Flexible Patterns

Matching with Groups

Substitution

Tools

29

Substitution

Regular expression engines usually allow for substitution as
well as matching. In the replacement pattern, back-references
are allowed to insert captured groups.

Match:� �
(I|you|they)'ve� �
Replace with:� �
\1 have� �
This replaces I’ve with I have, you’ve with you have, etc.

30

Presentation agenda

Introduction

Crafting Regular Expressions

Basic Patterns

Flexible Patterns

Matching with Groups

Substitution

Tools

31

Tools

Here are some tools for regular expressions:

• grep (Linux and macOS, Windows with a download)
• http://www.regexbuddy.com/ (Windows)
• Many text editors:

• https://www.sublimetext.com/3
• https://code.visualstudio.com/
• https://www.gnu.org/software/emacs/
• …

• Web-based editors:
• https://regex101.com/
• https://regexr.com/
• …

• Browser plugins let you search web pages

• Most programming languages have a regex module 32

http://www.regexbuddy.com/
https://www.sublimetext.com/3
https://code.visualstudio.com/
https://www.gnu.org/software/emacs/
https://regex101.com/
https://regexr.com/

Thanks

Thank you!

33

	Introduction
	Crafting Regular Expressions
	Basic Patterns
	Flexible Patterns
	Matching with Groups

	Substitution
	Tools

