
Object-Oriented Programming in Python 2-28

Python's str class

• A list can represent any sequence of objects

• A very common need in computing is for a
sequence of text characters.

• There is a specialized class, named str,
devoted to manipulating character strings.

Object-Oriented Programming in Python 2-29

String literals

• Can enclose in single quotes: 'bread'
• Can enclose in double quotes: "bread"
• This choice helps when you want to use a

single or double quote as a character within
the string: "Who's there?"

• Can embed a newline character using an
escape character \n as in:
"Knock Knock\nWho's there?"

Object-Oriented Programming in Python 2-30

Common behaviors

greeting = 'How do you do?'
• len(greeting) returns 14
• 'yo' in greeting returns True
• greeting.count('do') returns 2
• greeting.index('do') returns 4
• greeting[2] returns 'w'

Object-Oriented Programming in Python 2-31

Slicing is a generalization of indexing that is
supported by strings (and lists too).

Slicing

1111111111222222
01234567890123456789012345

alphabet = 'abcdefghijklmnopqrstuvwxyz'

Object-Oriented Programming in Python 2-32

Slicing

1111111111222222
01234567890123456789012345

alphabet = 'abcdefghijklmnopqrstuvwxyz'

Slicing is a generalization of indexing that is
supported by strings (and lists too).

alphabet[4] returns 'e'

Object-Oriented Programming in Python 2-33

Slicing

1111111111222222
01234567890123456789012345

alphabet = 'abcdefghijklmnopqrstuvwxyz'

Slicing is a generalization of indexing that is
supported by strings (and lists too).

alphabet[4:13] returns 'efghijklm'
(starting at 4, going up to but not including 13)

Object-Oriented Programming in Python 2-34

Slicing

1111111111222222
01234567890123456789012345

alphabet = 'abcdefghijklmnopqrstuvwxyz'

Slicing is a generalization of indexing that is
supported by strings (and lists too).

alphabet[:6] returns 'abcdef'
(starting at beginning going up to but not including 6)

Object-Oriented Programming in Python 2-35

Slicing

1111111111222222
01234567890123456789012345

alphabet = 'abcdefghijklmnopqrstuvwxyz'

Slicing is a generalization of indexing that is
supported by strings (and lists too).

alphabet[23:] returns 'xyz'
(starting at 23 going all the way to the end)

Object-Oriented Programming in Python 2-36

Slicing

1111111111222222
01234567890123456789012345

alphabet = 'abcdefghijklmnopqrstuvwxyz'

Slicing is a generalization of indexing that is
supported by strings (and lists too).

alphabet[9:20:3] returns 'jmps'
(starting at 9, stopping before 20, stepping by 3)

Object-Oriented Programming in Python 2-37

Slicing

1111111111222222
01234567890123456789012345

alphabet = 'abcdefghijklmnopqrstuvwxyz'

Slicing is a generalization of indexing that is
supported by strings (and lists too).

alphabet[17:5:-3] returns 'roli'
(starting at 17, toward but not with 5, stepping by -3)

Object-Oriented Programming in Python 2-38

Slicing

1111111111222222
01234567890123456789012345

alphabet = 'abcdefghijklmnopqrstuvwxyz'

Slicing is a generalization of indexing that is
supported by strings (and lists too).

alphabet[: :-1] 'zyxwvutsrqponmlkjihgfedcba'
(everything, but in reverse order)

Object-Oriented Programming in Python 2-39

Summary of Slicing
Notice that convention for slicing

alphabet[start:stop:step]

uses indices akin to that of

range(start, stop, step)

Object-Oriented Programming in Python 2-40

Differences: list and str

• We cannot change an existing string.

• However, we can create new strings based
upon existing ones.

• List are mutable; strings are immutable
(allows Python to optimize the internals)

Object-Oriented Programming in Python 2-41

Example: lower()
>>> formal = 'Hello'
>>>

str

'Hello'

formal

Object-Oriented Programming in Python 2-42

Example: lower()
>>> formal = 'Hello'
>>> informal = formal.lower()
>>>

str

'hello'

informalstr

'Hello'

formal

Note that formal is unchanged

Object-Oriented Programming in Python 2-43

Reassigning an Identifier
>>> person = 'Alice'
>>>

str

'Alice'

person

Object-Oriented Programming in Python 2-44

Reassigning an Identifier
>>> person = 'Alice'
>>> person = person.lower()
>>>

str

'alice'

personstr

'Alice'

Object-Oriented Programming in Python 2-45

Creating New Strings

• greeting.lower()
• greeting.upper()
• greeting.capitalize()
• greeting.strip()
• greeting.center(30)
• greeting.replace('hi','hello')

Each of the following leaves the original string
unchanged, returning a new string as a result.

Object-Oriented Programming in Python 2-46

Additional string methods

• greeting.islower() not to be confused with lower()
• greeting.isupper()
• greeting.isalpha()
• greeting.isdigit()
• greeting.startswith(pattern)
• greeting.endswith(pattern)

Strings support other methods that are specific to
the context of textual information

Object-Oriented Programming in Python 2-47

Converting between
strings and lists

• To support text processing, the str class has
methods to split and rejoin strings.

• split is used to divide a string into a list of
pieces based upon a given separator.

• join is used to assemble a list of strings and
a separator into a composite string.

Object-Oriented Programming in Python 2-48

The split method

By default, the pieces are based on dividing
the original around any form of whitespace
(e.g., spaces, tabs, newlines)

>>> request = 'eggs and milk and apples'
>>> request.split()
['eggs', 'and', 'milk', 'and', 'apples']

Object-Oriented Programming in Python 2-49

The split method

Some other separator can be specified as an
optional parameter to split. That string will be
used verbatim.
>>> request = 'eggs and milk and apples'
>>> request.split('and')
['eggs ', ' milk ', ' apples']

^ ^ ^ ^

(note well the spaces that remain)

Object-Oriented Programming in Python 2-50

The split method

Here is the same example, but with spaces
embedded within the separator string.

>>> request = 'eggs and milk and apples'
>>> request.split(' and ')
['eggs', 'milk', 'apples']

Object-Oriented Programming in Python 2-51

The join method

The join method takes a sequence of strings
and combines them using a given string
separator between each pair. Formally, this
method is invoked upon the separator.
>>> guests = ['John', 'Mary', 'Amy']
>>> conjunction = ' and '
>>> conjunction.join(guests)
'John and Mary and Amy'

Object-Oriented Programming in Python 2-52

The join method

The separator is often expressed as a literal.
>>> guests = ['John', 'Mary', 'Amy']
>>> ' and '.join(guests)
'John and Mary and Amy'

The sequence could be a string of characters.
>>> '-'.join('respect')
'r-e-s-p-e-c-t'

