
Getting Started with Python

Object-Oriented Programming in Python
Goldwasser and Letscher

Chapter 2

Object-Oriented Programming in Python 2-2

The Python Interpreter

• A piece of software that executes
commands for the Python language

• Start the interpreter by typing python at a
command prompt

• Many developers use an Integrated
Development Environment for Python
known as IDLE

Object-Oriented Programming in Python 2-3

The Python Prompt

>>>

• This lets us know that the interpreter awaits
our next command

Object-Oriented Programming in Python 2-4

Our First Example

>>>
>>> groceries = list()

• We see a new Python prompt, so the
command has completed.

• But what did it do?

Object-Oriented Programming in Python 2-5

Instantiation
>>> groceries = list()
>>>

Constructs a new instance from the list class
(notice the parentheses in the syntax)

list

Object-Oriented Programming in Python 2-6

Assignment Statement
>>> groceries = list()
>>>

groceries serves as an identifier for the newly
constructed object (like a “sticky label”)

listgroceries

Object-Oriented Programming in Python 2-7

Calling a Method
>>> groceries = list()
>>> groceries.append('bread')
>>>

list

'bread'

groceries

Object-Oriented Programming in Python 2-8

Displaying Internals

>>> groceries = list()
>>> groceries.append('bread')
>>>

When working in the interpreter, we do not
directly "see" the internal picture. But we
can request a textual representation.

groceries
['bread'] interpreter's response
>>>

Object-Oriented Programming in Python 2-9

Method Calling Syntax

groceries.append('bread')

object

• There may be many objects to choose from

method

• The given object may support many methods

parameters

• Use of parameters depends upon the method

Object-Oriented Programming in Python 2-10

Traceback (most recent call last):
File "<stdin>", line 1, in -toplevel-

NameError: name 'bread' is not defined

Common Errors

Traceback (most recent call last):
File "<stdin>", line 1, in -toplevel-

TypeError: append() takes exactly one argument (0 given)

>>> groceries.append(bread) What's the mistake?

>>> groceries.append() What's the mistake?

Object-Oriented Programming in Python 2-11

The append Method

>>> waitlist = list()
>>> waitlist.append('Kim')
>>> waitlist.append('Eric')
>>> waitlist.append('Nell')

New item added to the end of the list
(much like a restaurant's waitlist)

>>> waitlist
['Kim', 'Eric', 'Nell']

Object-Oriented Programming in Python 2-12

waitlist
['Kim', 'Donald', 'Eric', 'Nell']

The insert Method

waitlist.insert(1, 'Donald')
>>>

Can insert an item in an arbitrary place using a
numeric index to describe the position. An
element's index is the number of items before it.

>>> waitlist
['Kim', 'Eric', 'Nell']
>>>

Object-Oriented Programming in Python 2-13

Zero-Indexing

By this definition,
• the first element of the list has index 0
• the second element has index 1
• the last element has index (length - 1)

We call this convention zero-indexing.
(this is a common point of confusion)

Object-Oriented Programming in Python 2-14

waitlist
['Kim', 'Donald', 'Nell']
>>>

>>> waitlist
['Kim', 'Donald', 'Eric', 'Nell']
>>>

The remove Method

What if Eric gets tired of waiting?

waitlist.remove('Eric')
>>>

Object-Oriented Programming in Python 2-15

• Notice that we didn't have to identify where
the item is; the list will find it.

• If it doesn't exist, a ValueError occurs
• With duplicates, the earliest is removed

>>> groceries
['milk', 'bread', 'cheese', 'bread']
>>> groceries.remove('bread')
>>> groceries
['milk', 'cheese', 'bread']

The remove Method

Object-Oriented Programming in Python 2-16

• Thus far, all of the methods we have seen
have an effect on the list, but none return
any direct information to us.

• Many other methods provide an explicit
return value.

• As our first example: the count method

Return values

Object-Oriented Programming in Python 2-17

>>> groceries
['milk', 'bread', 'cheese', 'bread']
>>>

The count method

2 response from the interpreter
>>>

groceries.count('bread')

groceries.count('milk')
1
>>> groceries.count('apple')
0
>>>

Object-Oriented Programming in Python 2-18

>>> groceries
['milk', 'bread', 'cheese', 'bread']
>>>

Saving a Return Value
• We can assign an identifier to the returned object

numLoaves = groceries.count('bread')
>>>

• Notice that it is no longer displayed by interpreter

numLoaves
>>> 2

• Yet we can use it in subsequent commands

Object-Oriented Programming in Python 2-19

Operators
• Most behaviors are invoked with the typical

"method calling" syntax of object.method()

• But Python uses shorthand syntax for many of the
most common behaviors (programmers don't like
extra typing)

• For example, the length of a list can be queried as
len(groceries) although this is really shorthand
for a call groceries.__len__()

Object-Oriented Programming in Python 2-20

>>> waitlist
['Kim', 'Donald', 'Eric', 'Nell']
>>>

Accessing a list element

'Donald'
>>>

waitlist[1]

waitlist[3]
'Nell'
>>> waitlist[4]
Traceback (most recent call last):
File "<stdin>", line 1, in ?

IndexError: list index out of range

Object-Oriented Programming in Python 2-21

>>> waitlist
['Kim', 'Donald', 'Eric', 'Nell']
>>>

Negative Indices

'Nell'
>>>

waitlist[-1]

waitlist[-3]
'Donald'
>>> waitlist[-4]
'Kim'
>>>

Object-Oriented Programming in Python 2-22

List Literals

• We originally used the syntax list() to create a
new empty list. For convenience, there is a
shorthand syntax known as a list literal.
groceries = []
(experienced programmers like to type less!)

• List literals can also be used to create non-empty
lists, using a syntax similar to the one the
interpreter uses when displaying a list.
groceries = ['cheese', 'bread', 'milk']

Object-Oriented Programming in Python 2-23

favoriteColors
['red', 'green', 'purple', 'blue']
>>>

Copying Lists

• The list() constructor is useful for making a
new list modeled upon an existing sequence

>>> favoriteColors = ['red', 'green', 'purple', 'blue']
>>>

primaryColors
['red', 'green', 'blue']
>>>

primaryColors.remove('purple')
>>>

primaryColors = list(favoriteColors) a copy
>>>

Object-Oriented Programming in Python 2-24

The range function

• Lists of integers are commonly needed.
Python supports a built-in function named
range to easily construct such lists.

• There are three basic forms:
range(stop)
goes from zero up to but not including stop

>>> range(5)
[0, 1, 2, 3, 4]

Object-Oriented Programming in Python 2-25

The range function
range(start, stop) begins with start rather than zero
>>> range(23, 28)
[23, 24, 25, 26, 27]

range(start, stop, step) uses the given step size
>>> range(23, 35, 4)
[23, 27, 31]
>>> range(8, 3, -1)
[8, 7, 6, 5, 4]

Object-Oriented Programming in Python 2-26

Many useful behaviors

These will become familiar with more practice.

• groceries.pop() remove last element
• groceries.pop(i) remove ith element
• groceries.reverse() reverse the list
• groceries.sort() sort the list
• 'milk' in groceries does list contain?
• groceries.index('cereal') find leftmost match

Object-Oriented Programming in Python 2-27

Documentation

• See Section 2.2.6 of the book for more
details and a table summarizing the most
commonly used list behaviors.

• You may also type help(list) from within
the Python interpreter for documentation, or
for a specific method as help(list.insert)

