Python's str class

A list can represent any sequence of objects

* A very common need in computing Is for a
seqguence of text characters.

* There is a specialized class, named str,
devoted to manipulating character strings.

Object-Oriented Programming in Python 2-28

String literals

e Can enclose in single quotes: "bread®
e Can enclose in double quotes: "‘bread"

« This choice helps when you want to use a
single or double quote as a character within
the string: ""Who"s there?"

e Can embed a newline character using an
escape character \n as In:

“"Knock Knock\nWho®"s there?"

Object-Oriented Programming in Python 2-29

greeting = 'How do you do?'
* len(greeting)

e "yO" In greeting

e greeting.count("do")

e greeting.index("do")

e greeting[2]

Object-Oriented Programming in Python

Common behaviors

returns 14
returns True

returns 2
returns 4
returns "w*"

2-30

Slicing

Slicing is a generalization of indexing that Is
supported by strings (and lists too).

1111111111222222
01234567890123456789012345

alphabet = "abcdefghijklImnopgrstuvwxyz*®

Object-Oriented Programming in Python 2-31

Slicing

Slicing is a generalization of indexing that IS
supported by strings (and lists t00).

1111111111222222
01234567890123456/789012345

alphabet = "abcdefghijkImnopgrstuvwxyz*®

alphabet[4] returns "e*

Object-Oriented Programming in Python 2-32

Slicing

Slicing Is a generalization of indexing that Is
supported by strings (and lists t00).

1111111222222
0123 3456789012345
alphabet = "abcd nopqgrstuvwxyz”

alphabet[4:13] returns "efghijklIm*®
(starting at 4, going up to but not including 13)

Object-Oriented Programming in Python 2-33

Slicing

Slicing is a generalization of indexing that IS
supported by strings (and lists t00).

1111111111222222
67890123456789012345

alphabet = * ghi1jkImnopgrstuvwxyz*®

alphabet[:6] returns "abcdef"
(starting at beginning going up to but not including 6)

Object-Oriented Programming in Python 2-34

Slicing

Slicing Is a generalization of indexing that Is
supported by strings (and lists t00).

1111111111222
01234567890123456/789012

alphabet = "abcdefghi jkImnopgrstuvw

alphabet[23:] returns "xyz*"
(starting at 23 going all the way to the end)

Object-Oriented Programming in Python 2-35

Slicing

Slicing is a generalization of indexing that Is
supported by strings (and lists t0o).

1111111111222222
012345678901-3456/759012345

alphabet = "abcdefghi jklnnopgrstuvwxyz*®

alphabet[9:20:3] returns " ymps™”
(starting at 9, stopping before 20, stepping by 3)

Object-Oriented Programming in Python 2-36

Slicing

Slicing Is a generalization of indexing that IS
supported by strings (and lists t00).

1111111111222222
01234567590123456/89012345
alphabet = "abcdefghi jkimnopgrstuvwxyz*®

alphabet[17:5:-3] returns "rol1™
(starting at 17, toward but not with 5, stepping by -3)

Object-Oriented Programming in Python 2-37

Slicing

Slicing is a generalization of indexing that IS
supported by strings (and lists t00).

alphabet = *©

alphabet| : :-1] "zyxwvutsrgponmlkjthgfedcba*
(everything, but in reverse order)

Object-Oriented Programming in Python 2-38

Summary of Slicing

Notice that convention for slicing
alphabet|[start:stop:step]
uses indices akin to that of

range(start, stop, step)

Object-Oriented Programming in Python 2-39

= — Differences: list and str

...........

o Listare , strings are immutable
(allows Python to optimize the internals)

« \We cannot change an existing string.

 However, we can create new strings based
upon existing ones.

Object-Oriented Programming in Python 2-40

Example: lower()

>>> formal = "Hello”
>>>

- str

"Hello*"

Object-Oriented Programming in Python 2-41

Example: lower()

>>> formal = "Hello”

>>> Informal = formal.lower()
>>>

formal] informal

"Hello" "hello”

Note that formal is unchanged

Object-Oriented Programming in Python 2-42

Reassigning an Identifier

>>> person = "Alice”
>>>

person|

"Alice"

Object-Oriented Programming in Python 2-43

>>> person

>>> person
>>>

“"Ali1ce”

person. lower()

Str

Reassigning an Identifier

"Alice"

Str

Object-Oriented Programming in Python

*alice"

2-44

E— Creating New Strings

Each of the following leaves the original string
unchanged, returning a new string as a result.

e greeting.lower()

e greeting.upper()

e greeting.capitalize()

e greeting.strip()

e greeting.center(30)

o greeting.replace(’'hi’,'hello’)

Object-Oriented Programming in Python 2-45

Additional string methods

Strings support other methods that are specific to
the context of textual information

» greeting.islower() not to be confused with lower()
e greeting.isupper()

e (greeting.isalpha()

o greeting.isdigit()

e (greeting.startswith(pattern)

« greeting.endswith(pattern)

Object-Oriented Programming in Python 2-46

Converting between
strings and lists

e To support text processing, the str class has
methods to split and rejoin strings.

IS used to divide a string into a list of
pleces based upon a given separator.

IS used to assemble a list of strings and
a separator Into a composite string.

Object-Oriented Programming in Python 2-47

The split method

By default, the pieces are based on dividing
the original around any form of whitespace
(e.g., spaces, tabs, newlines)

>>> request = "eggs and milk and apples”

>>> request.split()
["eggs™, "and", "milk", "and", "apples”]

Object-Oriented Programming in Python 2-48

The split method

Some other separator can be specified as an
optional parameter to split. That string will be
used verbatim.

>>> request = "eggs and milk and apples”
>>> request.split("and™)
["feggs ", " miblk ", " apples”]

Object-Oriented Programming in Python 2-49

The split method

Here is the same example, but with spaces
embedded within the separator string.

>>> request = "eggs and milk and apples”
>>> request.split(® and ")
["eggs™, "milk", "apples”]

Object-Oriented Programming in Python 2-50

The join method

The join method takes a sequence of strings
and combines them using a given string
separator between each pair. Formally, this
method Is Invoked upon the separator.

>>> guests = ["John", "Mary®", “"Amy"]
>>> conjunction = " and

>>> conjunction. join(guests)

"John and Mary and Amy*"

Object-Oriented Programming in Python 2-51

The join method

The separator Is often expressed as a literal.

>>> guests = ["John®, “Mary~", "Amy"]
>>> " and ".join(guests)
"John and Mary and Amy*

The sequence could be a string of characters.

>>> "-"_join("respect”)
"r-e-s-p-e-c-t-

Object-Oriented Programming in Python 2-52

