
Introduction to Natural Language Processing

Steven Bird Ewan Klein Edward Loper

University of Melbourne, AUSTRALIA

University of Edinburgh, UK

University of Pennsylvania, USA

August 27, 2008

Knowledge and Communication in
Language

• human knowledge, human communication, expressed in
language

• language technologies: process human language
automatically

• handheld devices: predictive text, handwriting recognition
• web search engines: access to information locked up in

text
• two facets of the multilingual information society:

• natural human-machine interfaces
• access to stored information

Knowledge and Communication in
Language

• human knowledge, human communication, expressed in
language

• language technologies: process human language
automatically

• handheld devices: predictive text, handwriting recognition
• web search engines: access to information locked up in

text
• two facets of the multilingual information society:

• natural human-machine interfaces
• access to stored information

Knowledge and Communication in
Language

• human knowledge, human communication, expressed in
language

• language technologies: process human language
automatically

• handheld devices: predictive text, handwriting recognition
• web search engines: access to information locked up in

text
• two facets of the multilingual information society:

• natural human-machine interfaces
• access to stored information

Knowledge and Communication in
Language

• human knowledge, human communication, expressed in
language

• language technologies: process human language
automatically

• handheld devices: predictive text, handwriting recognition
• web search engines: access to information locked up in

text
• two facets of the multilingual information society:

• natural human-machine interfaces
• access to stored information

Knowledge and Communication in
Language

• human knowledge, human communication, expressed in
language

• language technologies: process human language
automatically

• handheld devices: predictive text, handwriting recognition
• web search engines: access to information locked up in

text
• two facets of the multilingual information society:

• natural human-machine interfaces
• access to stored information

Knowledge and Communication in
Language

• human knowledge, human communication, expressed in
language

• language technologies: process human language
automatically

• handheld devices: predictive text, handwriting recognition
• web search engines: access to information locked up in

text
• two facets of the multilingual information society:

• natural human-machine interfaces
• access to stored information

Knowledge and Communication in
Language

• human knowledge, human communication, expressed in
language

• language technologies: process human language
automatically

• handheld devices: predictive text, handwriting recognition
• web search engines: access to information locked up in

text
• two facets of the multilingual information society:

• natural human-machine interfaces
• access to stored information

Problem

• awash with language data
• inadequate tools (will this ever change?)
• overheads: Perl, Prolog, Java
• Natural Language Toolkit (NLTK) as a solution

Problem

• awash with language data
• inadequate tools (will this ever change?)
• overheads: Perl, Prolog, Java
• Natural Language Toolkit (NLTK) as a solution

Problem

• awash with language data
• inadequate tools (will this ever change?)
• overheads: Perl, Prolog, Java
• Natural Language Toolkit (NLTK) as a solution

Problem

• awash with language data
• inadequate tools (will this ever change?)
• overheads: Perl, Prolog, Java
• Natural Language Toolkit (NLTK) as a solution

NLTK: What you get...

• Book
• Documentation
• FAQ
• Installation instructions for Python, NLTK, data
• Distributions: Windows, Mac OSX, Unix, data,

documentation
• CD-ROM: Python, NLTK, documentation, third-party

libraries for numerical processing and visualization,
instructions

• Mailing lists:
nltk-announce, nltk-devel, nltk-users,
nltk-portuguese

NLTK: What you get...

• Book
• Documentation
• FAQ
• Installation instructions for Python, NLTK, data
• Distributions: Windows, Mac OSX, Unix, data,

documentation
• CD-ROM: Python, NLTK, documentation, third-party

libraries for numerical processing and visualization,
instructions

• Mailing lists:
nltk-announce, nltk-devel, nltk-users,
nltk-portuguese

NLTK: What you get...

• Book
• Documentation
• FAQ
• Installation instructions for Python, NLTK, data
• Distributions: Windows, Mac OSX, Unix, data,

documentation
• CD-ROM: Python, NLTK, documentation, third-party

libraries for numerical processing and visualization,
instructions

• Mailing lists:
nltk-announce, nltk-devel, nltk-users,
nltk-portuguese

NLTK: What you get...

• Book
• Documentation
• FAQ
• Installation instructions for Python, NLTK, data
• Distributions: Windows, Mac OSX, Unix, data,

documentation
• CD-ROM: Python, NLTK, documentation, third-party

libraries for numerical processing and visualization,
instructions

• Mailing lists:
nltk-announce, nltk-devel, nltk-users,
nltk-portuguese

NLTK: What you get...

• Book
• Documentation
• FAQ
• Installation instructions for Python, NLTK, data
• Distributions: Windows, Mac OSX, Unix, data,

documentation
• CD-ROM: Python, NLTK, documentation, third-party

libraries for numerical processing and visualization,
instructions

• Mailing lists:
nltk-announce, nltk-devel, nltk-users,
nltk-portuguese

NLTK: What you get...

• Book
• Documentation
• FAQ
• Installation instructions for Python, NLTK, data
• Distributions: Windows, Mac OSX, Unix, data,

documentation
• CD-ROM: Python, NLTK, documentation, third-party

libraries for numerical processing and visualization,
instructions

• Mailing lists:
nltk-announce, nltk-devel, nltk-users,
nltk-portuguese

NLTK: What you get...

• Book
• Documentation
• FAQ
• Installation instructions for Python, NLTK, data
• Distributions: Windows, Mac OSX, Unix, data,

documentation
• CD-ROM: Python, NLTK, documentation, third-party

libraries for numerical processing and visualization,
instructions

• Mailing lists:
nltk-announce, nltk-devel, nltk-users,
nltk-portuguese

NLTK: Who it is for...

• people who want to learn how to:
• write programs
• to analyze written language

• does not presume programming abilities:
• working examples
• graded exercises

• experienced programmers:
• quickly learn Python (if necessary)
• Python features for NLP
• NLP algorithms and data structures

NLTK: Who it is for...

• people who want to learn how to:
• write programs
• to analyze written language

• does not presume programming abilities:
• working examples
• graded exercises

• experienced programmers:
• quickly learn Python (if necessary)
• Python features for NLP
• NLP algorithms and data structures

NLTK: Who it is for...

• people who want to learn how to:
• write programs
• to analyze written language

• does not presume programming abilities:
• working examples
• graded exercises

• experienced programmers:
• quickly learn Python (if necessary)
• Python features for NLP
• NLP algorithms and data structures

NLTK: Who it is for...

• people who want to learn how to:
• write programs
• to analyze written language

• does not presume programming abilities:
• working examples
• graded exercises

• experienced programmers:
• quickly learn Python (if necessary)
• Python features for NLP
• NLP algorithms and data structures

NLTK: Who it is for...

• people who want to learn how to:
• write programs
• to analyze written language

• does not presume programming abilities:
• working examples
• graded exercises

• experienced programmers:
• quickly learn Python (if necessary)
• Python features for NLP
• NLP algorithms and data structures

NLTK: Who it is for...

• people who want to learn how to:
• write programs
• to analyze written language

• does not presume programming abilities:
• working examples
• graded exercises

• experienced programmers:
• quickly learn Python (if necessary)
• Python features for NLP
• NLP algorithms and data structures

NLTK: Who it is for...

• people who want to learn how to:
• write programs
• to analyze written language

• does not presume programming abilities:
• working examples
• graded exercises

• experienced programmers:
• quickly learn Python (if necessary)
• Python features for NLP
• NLP algorithms and data structures

NLTK: Who it is for...

• people who want to learn how to:
• write programs
• to analyze written language

• does not presume programming abilities:
• working examples
• graded exercises

• experienced programmers:
• quickly learn Python (if necessary)
• Python features for NLP
• NLP algorithms and data structures

NLTK: Who it is for...

• people who want to learn how to:
• write programs
• to analyze written language

• does not presume programming abilities:
• working examples
• graded exercises

• experienced programmers:
• quickly learn Python (if necessary)
• Python features for NLP
• NLP algorithms and data structures

NLTK: Who it is for...

• people who want to learn how to:
• write programs
• to analyze written language

• does not presume programming abilities:
• working examples
• graded exercises

• experienced programmers:
• quickly learn Python (if necessary)
• Python features for NLP
• NLP algorithms and data structures

NLTK: What you will learn...

1 how to analyze language data
2 key concepts from linguistic description and analysis
3 how linguistic knowledge is used in NLP components
4 data structures and algorithms used in NLP and linguistic

data management
5 standard corpora and their use in formal evaluation
6 organization of the field of NLP
7 skills in Python programming for NLP

NLTK: What you will learn...

1 how to analyze language data
2 key concepts from linguistic description and analysis
3 how linguistic knowledge is used in NLP components
4 data structures and algorithms used in NLP and linguistic

data management
5 standard corpora and their use in formal evaluation
6 organization of the field of NLP
7 skills in Python programming for NLP

NLTK: What you will learn...

1 how to analyze language data
2 key concepts from linguistic description and analysis
3 how linguistic knowledge is used in NLP components
4 data structures and algorithms used in NLP and linguistic

data management
5 standard corpora and their use in formal evaluation
6 organization of the field of NLP
7 skills in Python programming for NLP

NLTK: What you will learn...

1 how to analyze language data
2 key concepts from linguistic description and analysis
3 how linguistic knowledge is used in NLP components
4 data structures and algorithms used in NLP and linguistic

data management
5 standard corpora and their use in formal evaluation
6 organization of the field of NLP
7 skills in Python programming for NLP

NLTK: What you will learn...

1 how to analyze language data
2 key concepts from linguistic description and analysis
3 how linguistic knowledge is used in NLP components
4 data structures and algorithms used in NLP and linguistic

data management
5 standard corpora and their use in formal evaluation
6 organization of the field of NLP
7 skills in Python programming for NLP

NLTK: What you will learn...

1 how to analyze language data
2 key concepts from linguistic description and analysis
3 how linguistic knowledge is used in NLP components
4 data structures and algorithms used in NLP and linguistic

data management
5 standard corpora and their use in formal evaluation
6 organization of the field of NLP
7 skills in Python programming for NLP

NLTK: What you will learn...

1 how to analyze language data
2 key concepts from linguistic description and analysis
3 how linguistic knowledge is used in NLP components
4 data structures and algorithms used in NLP and linguistic

data management
5 standard corpora and their use in formal evaluation
6 organization of the field of NLP
7 skills in Python programming for NLP

NLTK: Your likely goals...

Goals Background
Arts and Humanities Science and Engineering

Language
Analysis

Programming to manage
language data, explore lin-
guistic models, and test
empirical claims

Language as a source
of interesting problems in
data modeling, data min-
ing, and knowledge dis-
covery

Language
Technol-
ogy

Learning to program, with
applications to familiar
problems, to work in lan-
guage technology or other
technical field

Knowledge of linguis-
tic algorithms and data
structures for high quality,
maintainable language
processing software

Philosophy

• practical
• programming
• principled
• pragmatic
• pleasurable
• portal

Philosophy

• practical
• programming
• principled
• pragmatic
• pleasurable
• portal

Philosophy

• practical
• programming
• principled
• pragmatic
• pleasurable
• portal

Philosophy

• practical
• programming
• principled
• pragmatic
• pleasurable
• portal

Philosophy

• practical
• programming
• principled
• pragmatic
• pleasurable
• portal

Philosophy

• practical
• programming
• principled
• pragmatic
• pleasurable
• portal

Structure

• Three parts:
1 Basics: text processing, tokenization, tagging, lexicons,

language engineering, text classification
2 Parsing: phrase structure, trees, grammars, chunking,

parsing
3 Advanced Topics: selected topics in greater depth:

feature-based grammar, unification, semantics, linguistic
data management

• each part: chapter on programming; three chapters on
NLP

• each chapter: motivation, sections, graded exercises,
summary, further reading

Structure

• Three parts:
1 Basics: text processing, tokenization, tagging, lexicons,

language engineering, text classification
2 Parsing: phrase structure, trees, grammars, chunking,

parsing
3 Advanced Topics: selected topics in greater depth:

feature-based grammar, unification, semantics, linguistic
data management

• each part: chapter on programming; three chapters on
NLP

• each chapter: motivation, sections, graded exercises,
summary, further reading

Structure

• Three parts:
1 Basics: text processing, tokenization, tagging, lexicons,

language engineering, text classification
2 Parsing: phrase structure, trees, grammars, chunking,

parsing
3 Advanced Topics: selected topics in greater depth:

feature-based grammar, unification, semantics, linguistic
data management

• each part: chapter on programming; three chapters on
NLP

• each chapter: motivation, sections, graded exercises,
summary, further reading

Structure

• Three parts:
1 Basics: text processing, tokenization, tagging, lexicons,

language engineering, text classification
2 Parsing: phrase structure, trees, grammars, chunking,

parsing
3 Advanced Topics: selected topics in greater depth:

feature-based grammar, unification, semantics, linguistic
data management

• each part: chapter on programming; three chapters on
NLP

• each chapter: motivation, sections, graded exercises,
summary, further reading

Structure

• Three parts:
1 Basics: text processing, tokenization, tagging, lexicons,

language engineering, text classification
2 Parsing: phrase structure, trees, grammars, chunking,

parsing
3 Advanced Topics: selected topics in greater depth:

feature-based grammar, unification, semantics, linguistic
data management

• each part: chapter on programming; three chapters on
NLP

• each chapter: motivation, sections, graded exercises,
summary, further reading

Structure

• Three parts:
1 Basics: text processing, tokenization, tagging, lexicons,

language engineering, text classification
2 Parsing: phrase structure, trees, grammars, chunking,

parsing
3 Advanced Topics: selected topics in greater depth:

feature-based grammar, unification, semantics, linguistic
data management

• each part: chapter on programming; three chapters on
NLP

• each chapter: motivation, sections, graded exercises,
summary, further reading

Python: Key Features

• simple yet powerful, shallow learning curve
• object-oriented: encapsulation, re-use
• scripting language, facilitates interactive exploration
• excellent functionality for processing linguistic data
• extensive standard library, incl graphics, web, numerical

processing
• downloaded for free from http://www.python.org/

http://www.python.org/

Python: Key Features

• simple yet powerful, shallow learning curve
• object-oriented: encapsulation, re-use
• scripting language, facilitates interactive exploration
• excellent functionality for processing linguistic data
• extensive standard library, incl graphics, web, numerical

processing
• downloaded for free from http://www.python.org/

http://www.python.org/

Python: Key Features

• simple yet powerful, shallow learning curve
• object-oriented: encapsulation, re-use
• scripting language, facilitates interactive exploration
• excellent functionality for processing linguistic data
• extensive standard library, incl graphics, web, numerical

processing
• downloaded for free from http://www.python.org/

http://www.python.org/

Python: Key Features

• simple yet powerful, shallow learning curve
• object-oriented: encapsulation, re-use
• scripting language, facilitates interactive exploration
• excellent functionality for processing linguistic data
• extensive standard library, incl graphics, web, numerical

processing
• downloaded for free from http://www.python.org/

http://www.python.org/

Python: Key Features

• simple yet powerful, shallow learning curve
• object-oriented: encapsulation, re-use
• scripting language, facilitates interactive exploration
• excellent functionality for processing linguistic data
• extensive standard library, incl graphics, web, numerical

processing
• downloaded for free from http://www.python.org/

http://www.python.org/

Python: Key Features

• simple yet powerful, shallow learning curve
• object-oriented: encapsulation, re-use
• scripting language, facilitates interactive exploration
• excellent functionality for processing linguistic data
• extensive standard library, incl graphics, web, numerical

processing
• downloaded for free from http://www.python.org/

http://www.python.org/

Python Example

import sys
for line in sys.stdin.readlines():

for word in line.split():
if word.endswith(’ing’):

print word

1 whitespace: nesting lines of code; scope
2 object-oriented: attributes, methods (e.g. line)
3 readable

Comparison with Perl

while (<>) {
foreach my $word (split) {

if ($word =~ /ing$/) {
print "$word\n";

}
}

}

1 syntax is obscure: what are: <> $ my split ?
2 “it is quite easy in Perl to write programs that simply look

like raving gibberish, even to experienced Perl
programmers” (Hammond Perl Programming for Linguists
2003:47)

3 large programs difficult to maintain, reuse

What NLTK adds to Python

NLTK defines a basic infrastructure that can be used to build
NLP programs in Python. It provides:

• Basic classes for representing data relevant to natural
language processing

• Standard interfaces for performing tasks, such as
tokenization, tagging, and parsing

• Standard implementations for each task, which can be
combined to solve complex problems

• Demonstrations (parsers, chunkers, chatbots)
• Extensive documentation, including tutorials and reference

documentation

What NLTK adds to Python

NLTK defines a basic infrastructure that can be used to build
NLP programs in Python. It provides:

• Basic classes for representing data relevant to natural
language processing

• Standard interfaces for performing tasks, such as
tokenization, tagging, and parsing

• Standard implementations for each task, which can be
combined to solve complex problems

• Demonstrations (parsers, chunkers, chatbots)
• Extensive documentation, including tutorials and reference

documentation

What NLTK adds to Python

NLTK defines a basic infrastructure that can be used to build
NLP programs in Python. It provides:

• Basic classes for representing data relevant to natural
language processing

• Standard interfaces for performing tasks, such as
tokenization, tagging, and parsing

• Standard implementations for each task, which can be
combined to solve complex problems

• Demonstrations (parsers, chunkers, chatbots)
• Extensive documentation, including tutorials and reference

documentation

What NLTK adds to Python

NLTK defines a basic infrastructure that can be used to build
NLP programs in Python. It provides:

• Basic classes for representing data relevant to natural
language processing

• Standard interfaces for performing tasks, such as
tokenization, tagging, and parsing

• Standard implementations for each task, which can be
combined to solve complex problems

• Demonstrations (parsers, chunkers, chatbots)
• Extensive documentation, including tutorials and reference

documentation

What NLTK adds to Python

NLTK defines a basic infrastructure that can be used to build
NLP programs in Python. It provides:

• Basic classes for representing data relevant to natural
language processing

• Standard interfaces for performing tasks, such as
tokenization, tagging, and parsing

• Standard implementations for each task, which can be
combined to solve complex problems

• Demonstrations (parsers, chunkers, chatbots)
• Extensive documentation, including tutorials and reference

documentation

NLTK Design: Requirements

1 simplicity: intuitive framework with substantial building
blocks

2 consistency: uniform data structures, interfaces —
predictability

3 extensibility: accommodates new components (replicate
vs extend exiting functionality)

4 modularity: interaction between components
5 well-documented: substantial documentation

NLTK Design: Requirements

1 simplicity: intuitive framework with substantial building
blocks

2 consistency: uniform data structures, interfaces —
predictability

3 extensibility: accommodates new components (replicate
vs extend exiting functionality)

4 modularity: interaction between components
5 well-documented: substantial documentation

NLTK Design: Requirements

1 simplicity: intuitive framework with substantial building
blocks

2 consistency: uniform data structures, interfaces —
predictability

3 extensibility: accommodates new components (replicate
vs extend exiting functionality)

4 modularity: interaction between components
5 well-documented: substantial documentation

NLTK Design: Requirements

1 simplicity: intuitive framework with substantial building
blocks

2 consistency: uniform data structures, interfaces —
predictability

3 extensibility: accommodates new components (replicate
vs extend exiting functionality)

4 modularity: interaction between components
5 well-documented: substantial documentation

NLTK Design: Requirements

1 simplicity: intuitive framework with substantial building
blocks

2 consistency: uniform data structures, interfaces —
predictability

3 extensibility: accommodates new components (replicate
vs extend exiting functionality)

4 modularity: interaction between components
5 well-documented: substantial documentation

NLTK Design: Non-requirements

1 encyclopedic: has many gaps; opportunity for students to
extend it

2 efficiency: not highly optimised for runtime performance
3 programming tricks: avoid in preference for clear

implementations (replicate vs extend exiting functionality)

NLTK Design: Non-requirements

1 encyclopedic: has many gaps; opportunity for students to
extend it

2 efficiency: not highly optimised for runtime performance
3 programming tricks: avoid in preference for clear

implementations (replicate vs extend exiting functionality)

NLTK Design: Non-requirements

1 encyclopedic: has many gaps; opportunity for students to
extend it

2 efficiency: not highly optimised for runtime performance
3 programming tricks: avoid in preference for clear

implementations (replicate vs extend exiting functionality)

Corpora Distributed with NLTK
• Australian ABC News, 2 genres, 660k words, sentence-segmented
• Brown Corpus, 15 genres, 1.15M words, tagged
• CMU Pronouncing Dictionary, 127k entries
• CoNLL 2000 Chunking Data, 270k words, tagged and chunked
• CoNLL 2002 Named Entity, 700k words, pos- and named-entity-tagged (Dutch, Spanish)
• Floresta Treebank, 9k sentences (Portuguese)
• Genesis Corpus, 6 texts, 200k words, 6 languages
• Gutenberg (sel), 14 texts, 1.7M words
• Indian POS-Tagged Corpus, 60k words pos-tagged (Bangla, Hindi, Marathi, Telugu)
• NIST 1999 Info Extr (sel), 63k words, newswire and named-entity SGML markup
• Names Corpus, 8k male and female names
• PP Attachment Corpus, 28k prepositional phrases, tagged as noun or verb modifiers
• Presidential Addresses, 485k words, formatted text
• Roget’s Thesaurus, 200k words, formatted text
• SEMCOR, 880k words, part-of-speech and sense tagged
• SENSEVAL 2, 600k words, part-of-speech and sense tagged
• Shakespeare XML Corpus (sel), 8 books
• Stopwords Corpus, 2,400 stopwords for 11 languages
• Switchboard Corpus (sel), 36 phonecalls, transcribed, parsed
• Univ Decl Human Rights, 480k words, 300+ languages
• US Pres Addr Corpus, 480k words
• Penn Treebank (sel), 40k words, tagged and parsed
• TIMIT Corpus (sel), audio files and transcripts for 16 speakers
• Wordlist Corpus, 960k words and 20k affixes for 8 languages
• WordNet, 145k synonym sets

	Preface
	Overview

	NLTK Book
	The Python Programming Language
	Key Features
	Python Example
	Comparison with Perl
	What NLTK adds to Python

