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• people who want to learn how to:
• write programs
• to analyze written language

• does not presume programming abilities:
• working examples
• graded exercises

• experienced programmers:
• quickly learn Python (if necessary)
• Python features for NLP
• NLP algorithms and data structures
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NLTK: Your likely goals...

Goals Background
Arts and Humanities Science and Engineering

Language
Analysis

Programming to manage
language data, explore lin-
guistic models, and test
empirical claims

Language as a source
of interesting problems in
data modeling, data min-
ing, and knowledge dis-
covery

Language
Technol-
ogy

Learning to program, with
applications to familiar
problems, to work in lan-
guage technology or other
technical field

Knowledge of linguis-
tic algorithms and data
structures for high quality,
maintainable language
processing software
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language engineering, text classification
2 Parsing: phrase structure, trees, grammars, chunking,

parsing
3 Advanced Topics: selected topics in greater depth:

feature-based grammar, unification, semantics, linguistic
data management

• each part: chapter on programming; three chapters on
NLP

• each chapter: motivation, sections, graded exercises,
summary, further reading
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Python Example

import sys
for line in sys.stdin.readlines():

for word in line.split():
if word.endswith(’ing’):

print word

1 whitespace: nesting lines of code; scope
2 object-oriented: attributes, methods (e.g. line)
3 readable



Comparison with Perl

while (<>) {
foreach my $word (split) {

if ($word =~ /ing$/) {
print "$word\n";

}
}

}

1 syntax is obscure: what are: <> $ my split ?
2 “it is quite easy in Perl to write programs that simply look

like raving gibberish, even to experienced Perl
programmers” (Hammond Perl Programming for Linguists
2003:47)

3 large programs difficult to maintain, reuse



What NLTK adds to Python

NLTK defines a basic infrastructure that can be used to build
NLP programs in Python. It provides:

• Basic classes for representing data relevant to natural
language processing

• Standard interfaces for performing tasks, such as
tokenization, tagging, and parsing

• Standard implementations for each task, which can be
combined to solve complex problems

• Demonstrations (parsers, chunkers, chatbots)
• Extensive documentation, including tutorials and reference

documentation
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1 simplicity: intuitive framework with substantial building
blocks

2 consistency: uniform data structures, interfaces —
predictability

3 extensibility: accommodates new components (replicate
vs extend exiting functionality)

4 modularity: interaction between components
5 well-documented: substantial documentation
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1 encyclopedic: has many gaps; opportunity for students to
extend it

2 efficiency: not highly optimised for runtime performance
3 programming tricks: avoid in preference for clear

implementations (replicate vs extend exiting functionality)
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Corpora Distributed with NLTK
• Australian ABC News, 2 genres, 660k words, sentence-segmented
• Brown Corpus, 15 genres, 1.15M words, tagged
• CMU Pronouncing Dictionary, 127k entries
• CoNLL 2000 Chunking Data, 270k words, tagged and chunked
• CoNLL 2002 Named Entity, 700k words, pos- and named-entity-tagged (Dutch, Spanish)
• Floresta Treebank, 9k sentences (Portuguese)
• Genesis Corpus, 6 texts, 200k words, 6 languages
• Gutenberg (sel), 14 texts, 1.7M words
• Indian POS-Tagged Corpus, 60k words pos-tagged (Bangla, Hindi, Marathi, Telugu)
• NIST 1999 Info Extr (sel), 63k words, newswire and named-entity SGML markup
• Names Corpus, 8k male and female names
• PP Attachment Corpus, 28k prepositional phrases, tagged as noun or verb modifiers
• Presidential Addresses, 485k words, formatted text
• Roget’s Thesaurus, 200k words, formatted text
• SEMCOR, 880k words, part-of-speech and sense tagged
• SENSEVAL 2, 600k words, part-of-speech and sense tagged
• Shakespeare XML Corpus (sel), 8 books
• Stopwords Corpus, 2,400 stopwords for 11 languages
• Switchboard Corpus (sel), 36 phonecalls, transcribed, parsed
• Univ Decl Human Rights, 480k words, 300+ languages
• US Pres Addr Corpus, 480k words
• Penn Treebank (sel), 40k words, tagged and parsed
• TIMIT Corpus (sel), audio files and transcripts for 16 speakers
• Wordlist Corpus, 960k words and 20k affixes for 8 languages
• WordNet, 145k synonym sets
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